Complex regional pain syndrome (CRPS) is a chronic (lasting greater than six months) pain condition that most often affects one limb (arm, leg, hand, or foot) usually after an injury. CRPS is believed to be caused by damage to, or malfunction of, the peripheral and central nervous systems. The central nervous system is composed of the brain and spinal cord; the peripheral nervous system involves nerve signaling from the brain and spinal cord to the rest of the body. CRPS is characterized by prolonged or excessive pain and changes in skin color, temperature, and/or swelling in the affected area.
CRPS is divided into two types: CRPS-I and CRPS-II. Individuals without a confirmed nerve injury are classified as having CRPS-I (previously known as reflex sympathetic dystrophy syndrome). CRPS-II (previously known as causalgia) is when there is an associated, confirmed nerve injury. As some research has identified evidence of nerve injury in CRPS-I, it is unclear if this disorders will always be divided into two types. Nonetheless, the treatment is similar.
CRPS symptoms vary in severity and duration, although some cases are mild and eventually go away. In more severe cases, individuals may not recover and may have long-term disability.
Rehabilitation and physical therapy. An exercise program to keep the painful limb or body part moving can improve blood flow and lessen the circulatory symptoms. Additionally, exercise can help improve the affected limb’s flexibility, strength, and function. Rehabilitating the affected limb also can help to prevent or reverse the secondary brain changes that are associated with chronic pain. Occupational therapy can help the individual learn new ways to work and perform daily tasks.
Psychotherapy. CRPS and other painful and disabling conditions often are associated with profound psychological symptoms for affected individuals and their families. People with CRPS may develop depression, anxiety, or post-traumatic stress disorder, all of which heighten the perception of pain and make rehabilitation efforts more difficult. Treating these secondary conditions is important for helping people cope and recover from CRPS.
Medications. Several different classes of medication have been reported to be effective for CRPS, particularly when used early in the course of the disease. However, no drug is approved by the U.S. Food and Drug Administration specifically for CRPS, and no single drug or combination of drugs is guaranteed to be effective in every person.
The brain is the most complex part of the human body. This three-pound organ is the seat of intelligence, interpreter of the senses, initiator of body movement, and controller of behavior. Lying in its bony shell and washed by protective fluid, the brain is the source of all the qualities that define our humanity. The brain is the crown jewel of the human body.
For centuries, scientists and philosophers have been fascinated by the brain, but until recently they viewed the brain as nearly incomprehensible. Now, however, the brain is beginning to relinquish its secrets. Scientists have learned more about the brain in the last 10 years than in all previous centuries because of the accelerating pace of research in neurological and behavioral science and the development of new research techniques. As a result, Congress named the 1990s the Decade of the Brain. At the forefront of research on the brain and other elements of the nervous system is the National Institute of Neurological Disorders and Stroke (NINDS), which conducts and supports scientific studies in the United States and around the world.
This fact sheet is a basic introduction to the human brain. It may help you understand how the healthy brain works, how to keep it healthy, and what happens when the brain is diseased or dysfunctional.
Image 1
The Architecture of the Brain
The brain is like a committee of experts. All the parts of the brain work together, but each part has its own special properties. The brain can be divided into three basic units: the forebrainImage 2 , the midbrainImage3, and the hindbrain Image4 .
The hindbrain includes the upper part of the spinal cord, the brain stem, and a wrinkled ball of tissue called the cerebellum (Image 1). The hindbrain controls the body’s vital functions such as respiration and heart rate. The cerebellum coordinates movement and is involved in learned rote movements. When you play the piano or hit a tennis ball you are activating the cerebellum. The uppermost part of the brainstem is the midbrain, which controls some reflex actions and is part of the circuit involved in the control of eye movements and other voluntary movements. The forebrain is the largest and most highly developed part of the human brain: it consists primarily of the cerebrum (Image 2) and the structures hidden beneath it (see “The Inner BrainImage 5“).
When people see pictures of the brain it is usually the cerebrum that they notice. The cerebrum sits at the topmost part of the brain and is the source of intellectual activities. It holds your memories, allows you to plan, enables you to imagine and think. It allows you to recognize friends, read books, and play games.
The cerebrum is split into two halves (hemispheres) by a deep fissure. Despite the split, the two cerebral hemispheres communicate with each other through a thick tract of nerve fibers that lies at the base of this fissure. Although the two hemispheres seem to be mirror images of each other, they are different. For instance, the ability to form words seems to lie primarily in the left hemisphere, while the right hemisphere seems to control many abstract reasoning skills.
For some as-yet-unknown reason, nearly all of the signals from the brain to the body and vice-versa cross over on their way to and from the brain. This means that the right cerebral hemisphere primarily controls the left side of the body and the left hemisphere primarily controls the right side. When one side of the brain is damaged, the opposite side of the body is affected. For example, a stroke in the right hemisphere of the brain can leave the left arm and leg paralyzed.
The Forebrain
The Midbrain
The Hindbrain
Each cerebral hemisphere can be divided into sections, or lobes, each of which specializes in different functions. To understand each lobe and its specialty we will take a tour of the cerebral hemispheres, starting with the two frontal lobes (Image1), which lie directly behind the forehead. When you plan a schedule, imagine the future, or use reasoned arguments, these two lobes do much of the work. One of the ways the frontal lobes seem to do these things is by acting as short-term storage sites, allowing one idea to be kept in mind while other ideas are considered. In the rearmost portion of each frontal lobe is a motor area (Image1), which helps control voluntary movement. A nearby place on the left frontal lobe called Broca’s area (Image 1) allows thoughts to be transformed into words.
When you enjoy a good meal—the taste, aroma, and texture of the food—two sections behind the frontal lobes called the parietal lobes (Image 1) are at work. The forward parts of these lobes, just behind the motor areas, are the primary sensory areas (Image 1). These areas receive information about temperature, taste, touch, and movement from the rest of the body. Reading and arithmetic are also functions in the repertoire of each parietal lobe.
As you look at the words and pictures on this page, two areas at the back of the brain are at work. These lobes, called the occipital lobes (Image 1), process images from the eyes and link that information with images stored in memory. Damage to the occipital lobes can cause blindness.
The last lobes on our tour of the cerebral hemispheres are the temporal lobes (Image 1), which lie in front of the visual areas and nest under the parietal and frontal lobes. Whether you appreciate symphonies or rock music, your brain responds through the activity of these lobes. At the top of each temporal lobe is an area responsible for receiving information from the ears. The underside of each temporal lobe plays a crucial role in forming and retrieving memories, including those associated with music. Other parts of this lobe seem to integrate memories and sensations of taste, sound, sight, and touch.
Singles out abnormal blood vessel formation that fuels tumor growth
Scientists report promising activity of a novel drug that targets a key molecular driver of clear cell renal cell carcinoma in patients with metastatic disease.
Researchers from Dana-Farber Cancer Institute report a response rate of 24 percent across all risk categories of patients given an oral first-in-class agent that targets hypoxia inducible factor (HIF) 2-a, which promotes new blood vessel growth that fuels kidney tumors.
Based on these findings, a phase III trial has been launched.
“A new drug [MK-6482] as a single agent showing an overall response rate of 24 percent across all risk categories — poor, intermediate, and good, and in a heavily refractory population — is quite promising,” said Toni Choueiri, first author of the abstract. Choueiri is director of the Lank Center for Genitourinary Oncology and the Jerome and Nancy Kohlberg Professor of Medicine at Harvard Medical School.
The drug targets a component of the body’s mechanism for sensing oxygen levels and turning on genes that enable the body to adjust to hypoxia — a shortage of oxygen — by making more red blood cells and forming new blood vessels. Dana-Farber scientist and Choueiri’s mentor and collaborator William G. Kaelin Jr. shared the 2019 Nobel Prize in medicine with two other researchers for unraveling this complex mechanism, which can be hijacked by cancer to help tumors survive and grow.
In the vast majority of patients with clear cell renal carcinoma, a tumor suppressor protein known as Von Hippel-Lindau (VHL) is not functional. As a result, HIF proteins accumulate inside the tumor cell, wrongly signaling a shortage of oxygen, and activating the formation of blood vessels, fueling tumor growth. Understanding this abnormal process has paved the way for new cancer drugs. MK-6482 is one of them, and is distinct in that it targets HIF-2a directly, leading to blocking cancer cell growth, proliferation, and abnormal blood vessel formation.
Here glioblastoma cells from a human brain are growing. Addition of the Ebola-VSV oncolytic virus results in tumor infection and cell death, seen here as black cells. Over time the infection spreads to other glioblastoma cells.
Glioblastomas are relentless, hard-to-treat, and often lethal brain tumors. Yale scientists have enlisted a most unlikely ally in efforts to treat this form of cancer — elements of the Ebola virus.
“The irony is that one of the world’s deadliest viruses may be useful in treating one of the deadliest of brain cancers,” said Yale’s Anthony van den Pol, professor of neurosurgery, who describes the Yale efforts Feb. 12 in the Journal of Virology.
The approach takes advantage of a weakness in most cancer tumors and also of an Ebola defense against the immune system response to pathogens.
Unlike normal cells, a large percentage of cancer cells lack the ability to generate an innate immune response against invaders such as viruses. This has led cancer researchers to explore the use of viruses to combat a variety of cancers.
In the 1950s, engineers faced a challenge. The parts they were using to wire computers – namely transistors – were too bulky for their plans to build more powerful machines. In response, they did something remarkable: they showed that it was possible to greatly shrink a computer’s main circuitry by etching, or chemically burning, the transistors onto tiny chips of silicon. Since then manufacturers have used the same basic process to cram many more circuits onto tinier chips that, ultimately, have powered today’s smartphones, PCs, and the internet.
In a recent article published in Science Translational Medicine, a team of NIH BRAIN Initiative®-funded researchers showed how this chip manufacturing process may also help neuroscientists overcome similar challenges they face today in recording brain wave activity.
Led by Jonathan Viventi, Ph.D., an assistant professor at Duke University, John A. Rogers, S.M., Ph.D., director of the Center on Bio-Integrated Electronics at Northwestern University, and Bijan Pesaran, Ph.D., professor of Neural Science at New York University, the team described how they made the Neural Matrix, a thinner-than-hair, flexible electrocorticography device that has the potential to record brain activity with higher fidelity and for longer periods than existing devices.